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The dynamics and the three-dimensional structure of vortices in a linearly stratified,
non-rotating fluid are investigated by means of laboratory experiments, an analytical
model and through numerical simulations. The laboratory experiments show that such
vortices have a thin pancake-like appearance. Due to vertical diffusion of momentum
the strength of these vortices decreases rapidly and their thickness increases in time.
Also it is found that inside a vortex the linear ambient density profile becomes
perturbed, resulting in a local steepening of the density gradient. Based on the
assumption of a quasi-two-dimensional axisymmetric flow (i.e. with zero vertical
velocity) a model is derived from the Boussinesq equations that illustrates that the
velocity field of the vortex decays due to diffusion and that the vortex is in so-
called cyclostrophic balance. This means that the centrifugal force inside the vortex
is balanced by a pressure gradient force that is provided by a perturbation of the
density profile in a way that is observed in the experiments. Numerical simulations
are performed, using a finite difference method in a cylindrical coordinate system. As
an initial condition the three-dimensional vorticity and density structure of the vortex,
found with the diffusion model, are used. The influence of the Froude number, Schmidt
number and Reynolds number, as well as the initial thickness of the vortex, on the
evolution of the flow are investigated. For a specific combination of flow parameters
it is found that during the decay of the vortex the relaxation of the isopycnals back to
their undisturbed positions can result in a stretching of the vortex. Potential energy of
the perturbed isopycnals is then converted into kinetic energy of the vortex. However,
when the stratification is strong enough (i.e. for small Froude numbers), the evolution
of the vortex can be described almost perfectly by the diffusion model alone.

1. Introduction
Coherent vortex structures are characteristic features of stratified flows. In the

context of oceanography and meteorology, Meddies formed by salty water flowing
from the Mediterranean Sea into the Atlantic Ocean (Bower, Armi & Ambar 1997),
and high and low pressure cells in the atmosphere are only two typical examples. In
many laboratory studies it has been shown that decaying turbulence in a stratified
fluid, generated by moving rakes, grids or bluff bodies, eventually results in the
formation of a large number of flat pancake-like vortex structures, that by mutual
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interaction increase in size and decrease in number. Due to the quasi-two-dimensional
(Q2D) nature of the flow in a strongly stratified fluid, the organization of stratified
turbulence into coherent vortex structures appears to have some analogies with the
process of self-organization in purely two-dimensional flows, see McWilliams (1984).
However, an important difference is the fact that vortices in a stratified fluid essentially
have a three-dimensional structure.

The vertical structure of vortices in a stratified fluid has so far only been studied
for arrays of vortices that arise in the far wake of a sphere towed through a linearly
stratified fluid, see Pao & Kao (1977), Chomaz et al. (1993) and Spedding, Browand
& Fincham (1996), and for freely decaying stratified grid turbulence, see Fincham,
Maxworthy & Spedding (1996). The latter authors proposed a model for the vorticity
structure of the Q2D vortices in such a wake. The vortex lines in these structures form
connections between different vortices at different levels in the fluid, and eventually
reconnect to form closed loops. A similar model has been suggested by Pao & Kao
(1977) for the vortices in the wake of a sphere in a stratified fluid. The decay of dipolar
vortices in a stratified fluid due to diffusion of vorticity in a direction perpendicular to
the flow field was described by Flór, van Heijst & Delfos (1995). Several models were
studied by the authors to describe this vertical diffusion process. These models were
extended by Trieling & van Heijst (1998) to include also radial diffusion for the case
of monopolar vortices. In both studies extensive experimental effort has been made
to measure fluid motion in the vortex symmetry plane. However, these measurements
only provide information on the decay rate of the vortex, not on the actual vertical
structure.

The vorticity distribution of a single vortex in a stratified fluid has not yet been
investigated in detail. This apparently very simple case is particularly interesting,
because the vortex lines need to form closed loops inside the fluid, but in contrast to
the vortex wake behind a sphere or a grid only one vorticity structure is present. The
investigation of the structure of a single vortex in a linearly stratified fluid can be a
convenient starting point to gain a better understanding of the interactions between
and the structure of the vortices that result from decaying turbulence in a stratified
medium. Furthermore, knowledge of the structure of a single axisymmetric vortex
will be expanded in the future to describe the formation of a so-called tripolar vortex
from an unstable monopole in a stratified fluid (see also Flór & van Heijst 1996)
and the interaction process between shielded oppositely signed monopoles (see also
Schmidt et al. 1998). The study of interactions between vortices at different levels
in the fluid will then be a next step to understanding the late stages of stratified
turbulence.

Two mechanisms that determine the dynamics of axisymmetric vortices in a linearly
stratified fluid will be considered here in more detail: radial and vertical diffusion of
vorticity and the perturbation of the isopycnals (i.e. the modification of the density
distribution inside the vortex). The role of density in the dynamics of a single vortex
has been recognized by Flór & van Heijst (1996). They roughly estimated the strength
of the perturbation of isopycnals for a vortex, based on the fact that the vortex is
in so-called cyclostrophic balance, but they did not support this with experimental
evidence. Only very recently have density measurements inside vortices (in the far
wake of a sphere towed through a stratified fluid) been reported by Bonnier, Eiff
& Bonneton (1999). They observed that isopycnals (i.e. planes of constant density)
are indeed depressed above the vortex and elevated below the vortex, suggesting that
the vortices are in cyclostrophic balance. Furthermore, they found that an identical
density structure could be measured for far-wake vortices originating from either
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laminar or turbulent near wakes. This suggests that the specific density structure is
fairly universal for Q2D vortices in a stratified fluid.

In this paper a model is proposed that describes the motion of an axisymmetric
vortex in a linearly stratified fluid, and the vorticity and density distribution of this
vortex will be derived. The model starts with the assumption that there is only an
azimuthal velocity component with a Gaussian distribution in the vertical direction.
It is then found that it is necessary to modify the initially linear density profile
inside the vortex in order to maintain the swirling motion. The model is compared
with results from both laboratory experiments and numerical simulations, in order
to assess the validity of the assumptions. The paper is organized as follows: in the
following section the experimental and numerical techniques are briefly summarized.
Experimental observations are described in § 3, and then in § 4 a model to interpret
the observations is introduced. In § 5 the results of several numerical simulations are
shown and discussed to verify the model accuracy and its limitations. Conclusions are
given in § 6. A short Appendix is added with details of the solution of the diffusion
model.

2. Investigation methods
The structure of pancake-like isolated monopolar vortices in a stratified fluid is

investigated by laboratory experiments and numerical simulations. The combined use
of these different approaches allows the flow dynamics to be studied for a wide range
of parameters and the results of each technique to be checked against each other.
In the following the main features of the techniques are described, while for more
detailed descriptions the reader is referred to the cited literature.

2.1. Experimental setup and measurement techniques

The experiments are performed in a square tank of size 80 × 80× 40 cm3 filled with
a linearly salt-stratified fluid. A sketch of the experiment tank is given in figure 1(a).
The density stratification is constructed by the two-tank method, described in detail
by Fortuin (1960) and Oster & Yamamoto (1963). To obtain quantitative information
on the velocity field of the vortex, small polystyrene particles (of about 1 mm in
diameter) are added to the stratification and they float at their neutrally buoyant
level in the fluid. These tracer particles are illuminated from the side by a light sheet,
produced by slide projectors. The thickness of this light sheet is typically of the order
of 5 mm. Above the tank a video camera is mounted, by which the particle motions
are recorded on video tape.

Vortices are generated by means of the so-called tangential injection method (Flór
& van Heijst 1996). Fluid with matched density is injected horizontally along the
inner wall of a bottomless thin-walled cylinder, which is positioned in the fluid at the
same level as the tracer particles (figure 1b). An amount of fluid ∆V is injected during
a period ∆t at an injection rate defined by Q = ∆V/∆t. The injection results in a
circular flow inside the cylinder, and a discus-like vortex is released when the cylinder
is carefully removed by lifting it out of the fluid. During this removal care should be
taken that the cylinder is moved vertically in order to prevent the vortex just created
from becoming vertically sheared by motion induced at other levels. The removal
should also be very slow, in order to prevent the generation of internal waves. As
the present investigation only focuses on the dynamics of Q2D vortices, the details
of the flow shortly after removing the cylinder are not discussed here. The density
stratification of the fluid eventually ensures the two-dimensional character of the flow
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Figure 1. (a) Schematic representation of the experiment tank. Tracer particles float at approxi-
mately half the fluid depth and they are illuminated from the sides by two light sheets, produced by
slide projectors. Above, a video camera is mounted that records the particle motion on video tape.
(b) Device used in the laboratory experiments to generate a monopolar vortex by the ‘tangential
injection method’.

inside the vortex, and possible disturbances created during the removal of the cylinder
are first allowed to die away, before the flow is analysed. For convenience the time
t = 0 is chosen as the moment when the fluid injection is stopped. For the reasons
described above the first velocity measurements are generally not taken until t ≈ 20 s.

After the experiments the video tape with the particle motions, see figure 2(a), is
processed with the DigImage system, developed by Dalziel (1992), to determine the
horizontal velocity field of the vortex at the symmetry plane, see figure 2(b). The
velocity field found by the two-dimensional particle tracking procedure (in which
particles are located at arbitrary positions in the plane of motion) is then interpolated
onto a rectangular grid (figure 2c) after which the vorticity component normal to the
plane is computed by differentiation (figure 2d).

During the experiments density measurements are also performed by using a con-
ductivity probe (see Davies 1992). The probe is mounted on a traversing mechanism
that moves it vertically through the stratification at a typical speed of 6–8 cm s−1. The
traversing mechanism is driven by a step motor which is controlled by a personal
computer. During the movement of the probe its output is sampled at a rate of 100 Hz;
the density measurements thus result in an almost continuous relationship between
the fluid depth z and the density ρ(z). The local buoyancy frequency N of the fluid is
then easily determined by calculating the density gradient: N2(z) = −(g/ρ) dρ/dz.

2.2. Numerical simulations

In addition to the laboratory experiments, numerical simulations are performed based
on the time-dependent incompressible Navier–Stokes equations. The numerical code,
developed by Verzicco & Orlandi (1996), is adapted to enable the simulation of flows
in a linearly stratified fluid as described in the following. The equations are first written
in the Boussinesq approximation; this assumption is suggested by the observation
that for these flows, in nature as well as in laboratory experiments, the relative
density variation rarely reaches the value of a few percent of the reference density.
Furthermore, the approximation simplifies the equations of motion considerably.

The Boussinesq approximation implies that the fluid density (ρ) and pressure (p)
can be expanded around a homogeneous basic state at rest (i.e. with v = 0) with fluid



Dynamics of pancake-like vortices in a stratified fluid 5

(a) (b)

(c) (d )

Figure 2. (a) ‘Streaks’ formed by moving particles obtained in a particle tracking experiment.
(b) Velocity field found by following the tracer particles in time. (c) Interpolated velocity field on a
grid of 30× 30 points. (d) Contour plot of the (vertical) vorticity distribution.

density ρ0 and pressure p0(z). The differences between the pressure and density and
that basic state are then written as a part that represents a linear density profile ρ̄(z)
with the pressure distribution p̄(z), which is in hydrostatic balance, and a deviation
from the linear density profile, indicated by a tilde:

p(x, t) = p0(z) + p̄(z) + p̃(x, t), (2.1)

ρ(x, t) = ρ0 + ρ̄(z) + ρ̃(x, t). (2.2)

The governing equations for the perturbation field (v, ρ̃, p̃) are then put in a non-
dimensional form (omitting symbols that indicate the non-dimensional character of
the variables) by scaling the velocities by a typical velocity scale V , lengths by a
typical length scale L, pressure by ρ0V

2 and density by N2Lρ0/g (with g the gravity
acceleration) and read

∂v

∂t
+ (v · ∇)v = −∇p̃− 1

F2
ρ̃ez +

1

Re
∇2v, (2.3)
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∇ · v = 0, (2.4)

∂ρ̃

∂t
+ (v · ∇)ρ̃− vz =

1

ScRe
∇2ρ̃, (2.5)

with ez the unit vector pointing vertically upward (with an orientation opposite to
gravity) and vz = v · ez the velocity component in that direction. The variables F ,
Re and Sc are the Froude, Reynolds and Schmidt numbers, respectively, defined as
F = V/(LN), Re = VL/ν and Sc = ν/κ with ν the kinematic viscosity, κ the diffusivity
of salt in water and N the buoyancy frequency defined as N2 = −(g/ρ0) dρ̄/dz. The
typical velocity and length scales V and L will be defined later on.

Equations (2.3)–(2.5), written in cylindrical coordinates and discretized by central
second-order finite-difference approximations on a staggered grid, are solved by a
fractional-step method whose features are described in Verzicco & Orlandi (1996).
The pressure and density are defined at the centres of the computational cells, whereas
the different velocity components are defined at the centres of the cell boundaries
that are perpendicular to the directions in which the velocities point. In a cylindrical
coordinate system, with velocity components (vr, vθ, vz), singularities can arise in the
equations of motion at r = 0. The only velocity component, however, that is evaluated
at this position is vr . The problem can therefore be overcome by defining the variable
q1 = vrr instead, which simplifies the discretization as q1 = 0 at r = 0. The other
variables are then q2 = vθ and q3 = vz .

The equations of motion for q are discretized in time, where the nonlinear (advec-
tive) and buoyancy terms are calculated explicitly by using a third-order Runge–Kutta
scheme, and the discretization of the viscous term implicitly by using a Crank–Nicolson
technique. The time-advancement of the numerical scheme is thus second-order ac-
curate in time, i.e. O(∆t)2, and uses a so-called fractional-step method, which consists
of four steps. (1) The velocity field q(m+1) at the new timestep (m + 1) is approxi-
mated by q̂ by using the pressure gradient ∇p(m) from the previous timestep. This
approximation for the pressure gradient introduces an error in the velocity field, that
can be accounted for by the introduction of (the gradient of) a scalar quantity, i.e.
∇Φ = α(q(m+1) − q̂), where α is a constant of proportionality. (2) Φ can be obtained
from the Poisson equation that results by applying the conservation of mass to the
new velocity field ∇2Φ = α∇ · q̂, because q(m+1) should be divergence-free. As q(m+1)

and q̂ both satisfy the same conditions at the wall, the necessary boundary condition
to solve the Poisson equation is given by ∇Φ = 0. (3) Substitution of Φ and q̂ in
the equation mentioned in step (1) yields the correct velocity field q(m+1) at the new
timestep. (4) Finally, the correct pressure p(m+1) at the new timestep can be calculated
by the substitution of the correct velocity field q(m+1) in the equations of motion. An
extensive description of the time-advancement procedure and the spatial discretiza-
tions of all terms in the equations of motion (in cylindrical coordinates) is given by
Verzicco & Orlandi (1996).

The flow in the simulations has periodic boundary conditions in the azimuthal
direction. In this paper the flow is assumed to remain axisymmetric during its
evolution and the three-dimensional numerical scheme (r, θ, z) can conveniently be
used in a two-dimensional way (r, z) by taking all derivatives in the azimuthal direction
to be zero, thereby saving computational time. All the simulations are run in a domain
of radial and vertical dimensions Lr = 8L and Lz = 8L, each direction discretized by
128 gridpoints. In the vertical direction periodic boundary conditions are used while
the lateral wall is assumed stress-free. It is checked by runs with bigger Lr and Lz
that the finiteness of the computational domain does not affect the results. Similarly,
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Figure 3. (a) Typical cross-section of the vorticity field of a monopole. The dashed line represents
the vorticity profile for α = 2. (b) Decay of the maximum values of the vorticity (normalized by
their values at t = 20 s) of a monopolar vortex in four similar experiments, performed under equal
conditions: Q = 2.22 cm3 s−1, ∆V = 50 cm3 and N = 1.9 rad s−1.

the grid independence is verified by simulating some cases on a 256 × 256 grid and
even a 512× 512 grid and again the results prove to be indistinguishable.

3. Experimental observations
In this investigation the velocity (and vorticity) distribution inside a monopolar

vortex is studied. First the results of some laboratory experiments are discussed. Later
these results will be used to define the initial conditions for a vortex model and for
the numerical simulations.

Figure 3(a) shows an azimuthally averaged radial cross-section of the vorticity
at the symmetry plane (z = 0) of a typical monopole. In agreement with previous
results by Flór & van Heijst (1996) and Trieling & van Heijst (1998), the circular
vortex has a core of one sign of vorticity surrounded by a ring of oppositely signed
vorticity. The vorticity profile is well fitted by the so-called α-profile introduced by
Carton, Flierl & Polvani (1989): ωz(r) = (1 − 1/2αrα) exp (−rα), with a value of α
that for this generation process is always around 2.† The presence of this ring is
explained by the fact that vortex lines should make closed loops inside the fluid, as
the vortex is created at a sufficient distance from both the bottom of the tank and
the surface of the fluid: vortex lines directed upwards in the core of the vortex should
therefore point downwards in another region of the fluid, resulting in the presence of
a ring of oppositely signed vertical vorticity. To investigate the reproducibility of the
monopoles generated, the decay of the maximum vorticity in the plane of symmetry
is measured as a function of time for four experiments. The results are shown in
figure 3(b) and, although some scatter is observed, the intensity and the time scale of
the decay is found to be essentially the same for all vortices.

Figure 4 shows the results of four separate experiments. In each experiment a
vortex is created at a different level in the stratification, such that in every experiment

† The reason that the vorticity profile of the vortex agrees so well with the α-profile for α = 2
is due to radial diffusion working on an isolated circular (two-dimensional) vortex. This process is
described by Kloosterziel (1990) and Beckers et al. (1999) and will be discussed in more detail in a
future publication.
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Figure 4. Evolution of the maximum values of the vorticity of a monopolar vortex in four similar
experiments. In each experiment the flow field is measured at a different level in the vortex. The
vortices have all been created under equal experimental conditions (see caption of figure 3). The
levels are (a) z = 0 (i.e. the symmetry plane), (b) 1.0 cm, (c) 2.0 cm and (d) 3.0 cm.

the layer of tracer particles is positioned at a different distance from the symmetry
plane of the vortex. In this way the flow inside a vortex is measured at four horizontal
planes located at different vertical positions: z = 0 (i.e. the symmetry plane), 1.0, 2.0
and 3.0 cm, respectively. At z = 0, figure 4(a), a rapid decay of the maximum vorticity
value is observed. In the study by Trieling & van Heijst (1998) it has been shown that
this decay can be attributed to vertical diffusion of momentum, or in other words
a thickening of the vortex structure. The present measurements of the vorticity at
levels other than the symmetry plane of the vortex, figure 4(b–d), confirm this finding:
the maximum vorticity values at these levels first increase and then decrease. Also
the farther the level, at which the vorticity is measured, is away from the symmetry
plane, the later the maximum vorticity value at this level attains its peak value. This
suggests that the mechanism that causes the decay of the vortex is indeed diffusion
of momentum in the vertical direction.

An important question concerns the distribution of the planar flow field in the
vertical direction, and consequently the definition of the thickness of the vortex. The
most obvious vertical distribution of the flow field is Gaussian, because this type of
distribution arises naturally when diffusion acts on a layer with initially zero thickness
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Figure 5. Vertical distribution of the maximum values of the vorticity at t = 20 s, compared with a
Gaussian distribution with λ = 0.9 cm.

(i.e. a Dirac delta function). In figure 5 an impression of the thickness of the vortex
is presented. The maximum vorticity values from the experiments shown in figure 4
at t = 20 s are plotted as a function of z and the values compare quite well with a
Gaussian distribution given by

ωzmax ∼ exp

(
− z2

2λ2

)
, (3.1)

where λ is called the thickness of the vortex. The thickness of the distribution shown
in figure 5 is λ = 0.9± 0.1 cm.

To investigate the effect of the vortex on its ambient density distribution, conduc-
tivity measurements are performed during the generation and subsequent decay of a
vortex (as described in § 2.1). The density profiles are measured through the centre
of the vortex before and several times after the injection cylinder is removed and the
results are shown in figure 6. In figure 6(a) the density profile of the undisturbed fluid
is given just before the start of the injection for comparison. Figure 6(b) shows the
profile at t = 1 s, just after stopping the injection, (c) at t = 22 s and (d) at t = 43 s.
Each dot in the graphs corresponds to one density sample, and the position of the
cylinder is marked by the two horizontal dashed lines. The initial density profile is
close to linear, and the associated buoyancy frequency is N = 1.0 rad s−1. Just after
the injection is stopped, it is clearly observed that the density profile inside the vortex
is perturbed; isopycnals are apparently deflected downwards in the upper half of the
vortex, and upwards in the lower half. One might object that the mere presence of an
injected volume of 50 cm3 of homogeneous fluid also creates a density anomaly inside
the cylinder, because it represents a disk of fluid with a constant density, a radius of
5 cm and a thickness of approximately 0.6 cm. However, such a disk of homogeneous
fluid would yield a density anomaly with a buoyancy frequency minimum, in contrast
to the density profile shown in figure 6(b) that clearly shows a steepening in the
density profile and thus a buoyancy frequency maximum. The origin of this density
perturbation is investigated in the next section by a simple model for the flow inside
a vortex.
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Figure 6. Vertical density profiles measured in the centre of a monopolar vortex, at four different
times. At t = 0 the tangential injection is stopped and at t = 10 s the injection cylinder is removed.
The profiles are shown (a) before the injection, (b) just after the injection, but with the cylinder
still present, (c) at t = 22 s and (d) at t = 43 s. The experimental parameters are Q = 2.22 cm3 s−1,
∆V = 50 cm3 and N = 1.0 rad s−1.

4. The diffusion model
In order to understand the results of the laboratory experiments a model is proposed

for an axisymmetric vortex in a linearly stratified fluid. This model describes the decay
of the vortex due to viscous diffusion only, and is therefore called the diffusion model.

Numerical simulations of decaying stratified turbulence by Riley, Metcalfe & Weiss-
man (1981) and Lilly (1983) have shown that for low Froude number (i.e. strongly
stratified) flows, the fluid motion can eventually be approximated as Q2D. This means
that in a first-order approximation the vertical velocity is zero. Before the measure-
ments were carried out, the vortices in the laboratory experiments were first allowed
to adjust after the cylinder was removed. After this adjustment they have laminar
flow conditions and they are believed to behave as Q2D. Therefore, consider a Q2D
monopolar axisymmetric vortex in a fluid with a stable linear density stratification at
a low Froude number. For a convenient analysis of the flow a cylindrical coordinate
system is introduced, with r the radial, θ the azimuthal and z the vertical upward co-
ordinate. If, according to the low-F hypothesis, vertical fluid motion is assumed to be
absent (vz = 0), and furthermore the flow is assumed to be axisymmetric (∂/∂θ = 0),
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incompressibility (∇ · v = 0) implies that radial fluid motion is also absent (vr = 0).
The three components of equation (2.3) then become

−v
2
θ

r
= −∂p̃

∂r
, (4.1)

∂vθ

∂t
=

1

Re

(
∂2vθ

∂r2
+

1

r

∂vθ

∂r
− vθ

r2
+
∂2vθ

∂z2

)
, (4.2)

0 = −∂p̃
∂z
− ρ̃

F2
. (4.3)

The radial and vertical components of the momentum equation, (4.1) and (4.3),
describe the cyclostrophic and hydrostatic balances, respectively. The azimuthal com-
ponent is a diffusion equation in two dimensions. Solving the Navier–Stokes equations,
satisfying appropriate initial and boundary conditions, yields expressions for the veloc-
ity vθ(r, z, t), the pressure distribution and the distribution of the density perturbation
ρ̃. Once the azimuthal velocity field is known, the vorticity distribution of the Q2D
axisymmetric vortex is easily obtained by differentiation:

ωr = −∂vθ
∂z

and ωz =
1

r

∂(rvθ)

∂r
. (4.4)

It is worth noting that within the hypotheses of the present model the vorticity vector
has only radial and vertical components, since the azimuthal component is zero by
definition.

Equation (4.2) is solved by the method of separation of variables, details of which
are given in the Appendix. Hankel integrals and Fourier transforms are used for the
solution, together with the requirements that the solution is finite at the axis (r = 0),
vanishes for r →∞ and is symmetric about the vortex midplane. Initial conditions
are required to integrate the solution in time and these have been derived from
the experimental observations. The initial velocity distribution inside the vortex is
assumed to be of the form

vθ(r, z, 0) = G(r)H(z). (4.5)

The vorticity distribution of a monopole in a stratified fluid is characterized by a core
of one sign of (vertical) vorticity, surrounded by a ring of oppositely signed vorticity,
as shown in the laboratory experiments. For these ‘shielded’ monopolar vortices the
radial distribution of the vertical vorticity in a horizontal plane is well approximated
by the α-profile with α = 2. Therefore this profile will be used to represent the radial
distribution of the velocity distribution, and this gives

G(r) =
r

2
exp (−r2). (4.6)

The vertical distribution of the azimuthal fluid motion, H(z), is assumed to be
Gaussian as was suggested by the experimental observations. The initial vertical
distribution is therefore approximated by

H(z) =
1

(2πΛ2)1/2
exp

(
− z2

2Λ2

)
, (4.7)

where Λ = λ/L is a non-dimensional constant, which represents the initial thickness
of the vortex.
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The time dependence of the velocity distribution can now be computed from (4.2)
(see the Appendix for details) and this gives

vθ(r, z, t) =
r

2π1/2(2Λ2 + (4/Re)t)1/2(1 + (4/Re)t)2
exp

(
− z2

2Λ2 + (4/Re)t

)

× exp

(
− r2

1 + (4/Re)t

)
. (4.8)

The radial and vertical growth of the vortex, due to diffusion, can be quantified by
the temporal evolution of the radial position r̂(t) where the vorticity ωz changes sign,
see (A 12), and by the evolution of the thickness of the vortex, denoted by ẑ(t):

r̂(t) =

(
1 +

4

Re
t

)1/2

, (4.9)

ẑ(t) =

(
Λ2 +

2

Re
t

)1/2

. (4.10)

Since the variable r has been non-dimensionalized by the length scale L the expression
for r̂ shows that L is given by the initial radius of the core of the vortex. Using the
expression for the vertical vorticity, see (A 12) in the Appendix, it can be found that
the decay of the vortex, based on the maximum value of the vorticity at r = 0, is
given by

ωzmax(z, t) =
1

π1/2(2Λ2 + (4/Re)t)1/2(1 + (4/Re)t)2
exp

(
− z2

2Λ2 + (4/Re)t

)
. (4.11)

Since ω is non-dimensionalized by V/L one can find a value for the velocity scale V
from V = (2π)1/2λωM , where ωM is the experimentally observed (dimensional) initial
maximum value of the vorticity, and λ the (dimensional) value for the thickness of
the vortex.

By using the cyclostrophic balance (4.1) and the hydrostatic balance (4.3) and
eliminating the pressure an expression equivalent to the thermal wind relation for a
rotating stratified flow (see, e.g. Pedlosky 1979) is obtained:

F2 2vθ
r

∂vθ

∂z
+
∂ρ̃

∂r
= 0. (4.12)

This equation indicates that a vertical shear of the azimuthal velocity is only possible
under the given assumptions if isopycnals (i.e. planes of constant density) are distorted
from their equilibrium position, resulting in a non-zero radial density gradient.

It is possible to derive an expression for the density perturbation ρ̃(r, z, t) that
corresponds to a (cyclostrophically balanced) velocity distribution vθ(r, z, t) by inte-
gration of (4.12). Substitution of the expression (4.8) and demanding that ρ̃ → 0 if
r →∞ yields

ρ̃(r, z, t) = −F
2z

4π

1(
2Λ2 + (4/Re)t

)2

1(
1 + (4/Re)t

)3
exp

(
− 2z2

2Λ2 + (4/Re)t

)

× exp

(
− 2r2

1 + (4/Re)t

)
. (4.13)
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The maximum value of the density perturbation is then given by

ρ̃max(t) =
F2

8πe1/2(2Λ2 + (4/Re)t)3/2(1 + (4/Re)t)3
. (4.14)

For a convenient interpretation of the (non-dimensional) density perturbation ρ̃, the
corresponding (dimensional) displacement ∆z of the isopycnals can easily be derived.
For a linear ambient density profile one can see that the (dimensional) density
difference ∆ρ over a distance ∆z is

∆ρ =
dρ̄

dz
∆z (4.15)

and because ρ̃ has been non-dimensionalized by N2Lρ0/g = |dρ̄/dz|L the displace-
ment of an isopycnal for a given value of ρ̃ is thus given by

∆z =

∣∣∣∣dρ̄dz

∣∣∣∣−1

(N2Lρ0/g)ρ̃ = Lρ̃. (4.16)

For example, a value ρ̃ = 0.01 implies that an isopycnal has been displaced over a
vertical distance equal to one percent of the length scale L. It can be seen from (4.13)
that isopycnals are depressed (∆z < 0) in the upper part (z > 0) of the vortex and
elevated (∆z > 0) in the lower part (z < 0) of the vortex, and this is in agreement
with the density measurements in figure 6. It is important to note that in this
diffusion model the time dependence of ρ̃ follows directly from the decay of vθ . This
is somewhat remarkable, since temporal changes of ρ̃ can only be caused by diffusion
of salt (the stratifying agent) or by vertical transport of fluid elements, see equation
(2.5). However, under the conditions used in the diffusion model (i.e. vz = 0, ∂/∂θ = 0
and consequently vr = 0) equations (2.3) and (2.5) are decoupled. Equation (2.3),
in a reduced form given by the set (4.1)–(4.3), is therefore sufficient to describe an
instantaneous relationship between the velocity field vθ , the pressure p̃ and the density
perturbation ρ̃.

Another remarkable result of the model is the fact that for certain combinations of
F and Λ expression (4.13) represents an unstable density distribution. The criterion
for the stability of a stratified fluid is given by ∂ρ/∂z 6 0, meaning that the density
of the fluid should not decrease with increasing depth. In non-dimensional variables
this criterion can be written as ∂ρ̃/∂z 6 1. In figure 7(a) the stability diagram for
(4.13) is given in (F,Λ)-space. Two examples are shown in figure 7(b). For Λ = 0.2
and F = 0.6 the deformed density profile contains a region with a positive density
gradient, whereas for F = 0.3 and the same Λ the density gradient is always negative.
This implies that for certain combinations of F and Λ a balanced vortex might not
be able to exist, according to the diffusion model.

To summarize, the complete diffusion model is given by the expressions for the
azimuthal velocity vθ(r, z, t), yielding the two vorticity components ωr(r, z, t) and
ωz(r, z, t), and the density perturbation ρ̃(r, z, t). Figure 8 shows the distributions of
the vertical and radial vorticity components, of the vortex lines, and of the density
perturbation in the (r, z)-plane for a typical monopolar vortex in a stratified fluid.
Solid lines indicate positive values, dashed lines negative values. The vortex has a core
of positive (vertical) vorticity, surrounded by a ring of negative (vertical) vorticity
(figure 8a). The radial vorticity is positive in the upper part of the vortex and negative
in the lower part (figure 8b). Contour plots of the quantity ξ = rvθ are shown in figure
8(c). Since for an axisymmetric vortex (with vr = 0 and vz = 0) ξ-isolines are always
tangent to the local vorticity vector, the ξ-contours indicate how the vortex lines form
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Figure 7. (a) Stability diagram that indicates for which values of F and Λ the initial density profile,
(4.12) for t = 0, is (un)stable. (b) Examples of a stable (F = 0.3) and unstable (F = 0.6) density
profile for a vortex with Λ = 0.2.

closed loops inside the fluid. Finally, figure 8(d) shows the distribution of the density
perturbation. Above the vortex midplane isopycnals are deflected downwards (ρ̃ < 0),
while below this plane they are deflected upwards (ρ̃ > 0).

5. Numerical simulations
In the previous section a simple, but useful, diffusion model has been derived,

that describes how the strength of the vortex decreases in time due to diffusion of
momentum and how the linear density distribution is perturbed by the presence of
the vortex. The nature of the diffusion model (no radial and vertical motions are
allowed) has resulted in the rather remarkable fact that the density perturbation
is supposed to adjust instantaneously to the velocity distribution. To gain a more
detailed insight in the dynamics of a vortex in a stratified fluid, additional numerical
simulations are performed that solve the complete set of governing equations (2.3)–
(2.5). These simulations might reveal to what extent the results of the diffusion model
are compatible with the real flow dynamics and allow a study of the influence of
the governing parameters of the flow in a systematic way. Comparison between the
results of the laboratory experiments, the diffusion model and the simulations can
then give a complete survey of the dynamics of axisymmetric vortices in a stratified
fluid.

5.1. Initial conditions

In a first set of simulations, the role of the cyclostrophic balance in the dynamics
of the vortex is investigated by using different initial conditions. More particularly,
by using the velocity and density fields derived from the diffusion model three initial
situations are considered. In case 1 the response of the stratified fluid to an initial
perturbation of the density ρ̃(r, z), i.e. (4.13) for t = 0, without imposing any velocity
field, is investigated. The initial density distribution is sketched for two isopycnals in
figure 9(a). It is to be expected that in case 1 the buoyancy force F buo = −(1/F2)ρ̃ez ,
see equation (2.3), will immediately bring the disturbed isopycnals back to their
original positions (dashed lines). This process is illustrated in figure 9(b). Due to the
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Figure 8. Spatial distribution of the vorticity and density perturbation in the (r, z)-plane for the
vortex described by the model, see equation (4.8). (a) ωz(r, z), (b) ωr(r, z), (c) ξ(r, z), (d) ρ̃(r, z). The
increments in the values represented by the contours are ∆ω = 0.05, ∆ξ = 0.02, ∆ρ̃ = 0.005 (with
Λ = 0.2 and F = 0.23). Continuous contours represent positive values, dashed contours represent
negative values.

conservation of mass, the restoration of the isopycnals will induce a radially inward
flow, and it is likely that a temporary circulation pattern will be formed as indicated
by the arrows. In case 2 the initial flow is given by the velocity distribution vθ(r, z),
i.e. (4.8) for t = 0, but no perturbation of the density distribution is prescribed. This
situation is sketched in figure 9(c). Initially the isopycnals (ρ1 and ρ2) are horizontal
(continuous lines), but due to the centrifugal force F c, caused by the velocity field, fluid
is accelerated radially outwards. This generates a circulation pattern as illustrated by
the arrows, and consequently, the isopycnals will become deformed (dashed lines).
This process is called the cyclostrophic adjustment of the vortex. Finally, in case 3
both the velocity distribution vθ(r, z) and the associated density perturbation ρ̃(r, z)
are prescribed, so that the initial vortex is in cyclostrophic balance. This simulation
can then illustrate whether the balance is maintained during the decay of the vortex.

5.1.1. The response of a stratified fluid to an initial density perturbation (case 1)

In a stably stratified fluid all isopycnals, i.e. planes of constant density, are hor-
izontal, but when such an isopycnal is locally elevated or depressed the buoyancy
force will restore the balance by forcing the isopycnal back to its original level. The
response of the stratified fluid to the initial density perturbation is shown in figure 10.
Contour plots of the azimuthal vorticity ωθ and of the density perturbation ρ̃ in the
(r, z)-plane are shown in (a) and (b), respectively. The azimuthal vorticity component,
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Figure 9. (a) Sketch of the shape of two isopycnals (ρ1 for z > 0, ρ2 for z < 0) for the density
perturbation given by (4.12). (b) Schematic drawing of the circulation pattern induced by the
buoyancy force F buo due to the release of a density perturbation as in (a). (c) Schematic drawing
of the circulation pattern due to the centrifugal force F c in a vortex that is (initially) not in
cyclostrophic balance.

defined by

ωθ =
∂vr

∂z
− ∂vz

∂r
, (5.1)

gives an impression of the flow field in the (r, z)-plane. Positive ωθ can thus be
associated with clockwise shearing motions, and vice versa. The contours of ωθ in
figure 10(a) illustrate that immediately after the initialization of the flow, a circulation
pattern is indeed generated, as was sketched in figure 9(b) and isopycnals move back
to their undisturbed positions, as indicated by the strong decrease of ρ̃ in figure
10(b). During the adjustment process the isopycnals overshoot their equilibrium
positions, and this results in the generation of internal waves, clearly illustrated by
the elongated, inclined ωθ- and ρ̃-patches at t = 2. Similar adjustment processes
to localized perturbations of the density distribution of a stratified fluid have been
reported by Wu (1969), Hartman & Lewis (1972) and Terez & Knio (1998). These
papers describe the response of a stratified fluid to the presence of a region with
partially mixed or homogeneous fluid. In fact such a region can be represented by
a perturbation as in figure 9(a), but with the isopycnals deflected in the opposite
direction. Also, these adjustment processes result in the generation of internal waves.

The generation of azimuthal vorticity ωθ can also be recognized as the baroclinic
production of vorticity, see Lighthill (1978, 1996). This theorem can be explained by
using the vorticity equation, which can be obtained by taking the curl of equation
(2.3). It states that when vertical displacements of fluid parcels in a stably stratified
fluid lead to horizontal gradients in the density this results in the production of
vorticity in a direction perpendicular to the plane formed by gravity g and ∇ρ. For
an axisymmetric density perturbation this thus leads to the production of vorticity in
the azimuthal direction.

5.1.2. The initially unbalanced vortex (case 2)

The diffusion model has shown that cyclostrophic balance of a vortex in a lin-
early stratified fluid is only possible when the isopycnals are deformed inside the
vortex. This conclusion can be investigated by studying the response of the stratified
fluid to the velocity distribution of a vortex, but without the accompanying density
perturbation. Figure 11 shows contour plots of the azimuthal vorticity and of the
density perturbation in the (r, z)-plane at four times. As illustrated in figure 9(c), the
centrifugal force inside the vortex does indeed cause a (secondary) circulation in the
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Figure 10. Contour plots in the (r, z)–plane of the azimuthal vorticity ωθ(r, z) in (a), and of the
density perturbation ρ̃(r, z) in (b) for t = 0, 1, 2 and 3, for the numerical simulation case 1. The
increments in the contour values are ∆ρ̃ = 0.0005 and ∆ωθ = 0.002 and the parameters of the
simulation are Λ = 0.4, Re = 100, F = 0.3 and Sc = 10.

(r, z)-plane. In figure 11(a) one observes, immediately after the initialization, an azi-
muthal vorticity distribution that can be associated with counterclockwise circulation
in the region z > 0 and clockwise circulation for z < 0. At the same time isopycnals
above and below the vortex are deflected towards the vortex symmetry plane z = 0:
ρ̃ < 0 for z > 0 and ρ̃ > 0 for z < 0. In other words, the circulation in the (r, z)-plane
generates the density perturbation that provides the necessary pressure gradient force
to balance the centrifugal force. The vortex is then in cyclostrophic balance. Just as
in the previous case, the sudden adjustment of the flow results in the generation of
internal waves that are radiated away from the centre of the vortex.

5.1.3. The initially balanced vortex (case 3)

One might expect that a vortex that is initially in cyclostrophic balance will show
none (or perhaps only very little) adjustment, because the centrifugal force is already
balanced. Figure 12 presents the results of a simulation for such an initially balanced
vortex. However, one can still observe a weak secondary circulation and small changes
in the shape of the density perturbation. The reason for this behaviour is the decay of
the vortex due to diffusion. The strength of the vortex decreases in time, so the flow
only remains in balance when the radial pressure gradient (due to the perturbation
of the isopycnals) also decreases. The diffusion of salt (the density stratifying agent)
cannot account for such a fast decay of the density perturbation, because salt diffuses
on a much larger time scale than momentum. Consequently, a buoyancy-driven flow
will arise, similar to the one illustrated in figure 9(b), until the centrifugal force and
the pressure gradient force inside the vortex are again in balance. Such a suggested
circulation pattern can indeed be observed in the azimuthal vorticity distribution in
figure 12(a): there is a clockwise circulation in the upper part and a counterclockwise
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Figure 11. Similar to figure 10, but now for the numerical simulation case 2.

t = 0 t = 1 t = 2 t = 4
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Figure 12. Similar to figure 10, but now for the numerical simulation case 3.

circulation in the lower part of the vortex. As the azimuthal vorticity is absent in
the diffusion model (because vr = 0 and vz = 0) the maximum value of ωθ can thus
be regarded as a convenient measure to express the deviation of the vortex from the
Q2D diffusion model during its decay.
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5.2. The influences of Sc, F and Re

The Schmidt number, defined by Sc = ν/κ, gives the ratio between the diffusivities
of momentum and salt. For a vortex in a stratified environment this ratio has an
important influence on the flow dynamics. In the previous simulations a Schmidt
number of Sc = 10 has been used, but in fact for the diffusivity of salt in water† the
Schmidt number is much larger: Sc ≈ 700.

To investigate the effect of the Schmidt number in more detail similations similar
to case 3 are performed, but now for Sc = 1, 10, 50 and 100. For the (imaginary) case
of Sc = 1 one might expect that the initial density perturbation decays exactly as fast
as the velocity distribution. This suggests that the vortex can stay in cyclostrophic
balance during its decay, without generating a secondary circulation pattern and
consequently its decay may be described by the diffusion model. Figure 13 shows
the results of the comparison between the evolution of the maximum values of the
density perturbation ρ̃max and of the azimuthal vorticity ωθmax for different Sc. For
Sc = 1 the decay of the density perturbation agrees very well with the diffusion model,
represented by the line ρ̃max(t). The vortex is thus very close to cyclostrophic balance
during its decay. For higher values of Sc this appears not to be the case, because
initially the decay of the density perturbation is slower than in the diffusion model.
The production of azimuthal vorticity (see figure 13b), which can be regarded as an
indicator of to what extent the flow deviates from the flow predicted by the diffusion
model, shows that for Sc = 1 the secondary circulation is very small. However, it is
not exactly zero, since the diffusion of momentum and density (salt) are not governed
by exactly the same equations:

∂vθ

∂t
+ (v · ∇)vθ +

vrvθ

r
=

1

Re

(
∇2vθ − vθ

r2

)
(5.2)

and
∂ρ̃

∂t
+ (v · ∇)ρ̃− vz =

1

Sc Re
∇2ρ̃. (5.3)

Even when initially vr = 0, vz = 0 and Sc = 1, vθ and ρ̃ will evolve differently, due
to the difference between their diffusion terms. This then results in an inbalance in
the vortex and the generation of a small secondary circulation (i.e. vr and vz are no
longer zero).

It may seem remarkable that for Sc = 10, 50 and 100 there is little difference
between the evolution of ρ̃max and ωθmax. This is, however, due to the fact that for
Sc = 10 the characteristic time scale for the diffusion of salt can be regarded as
already very large compared to the decay time scale of the vortex. Even larger values
of Sc do not alter these results substantially.‡ In general it is difficult to perform
well resolved simulations for realistic values of the Schmidt number, i.e. Sc ≈ 700,

† Note that for a thermally (instead of salt) stratified fluid a similar mechanism will take place,
but here the ratio between the diffusivities is called the Prandtl number. For thermally stratified
water the Prandtl number has a value of Pr ≈ 7 (at 20 ◦C). For thermally stratified air the Prandtl
number is even smaller than 1: Pr ≈ 0.7 (at 20 ◦C). This latter case is particularly interesting,
because for Pr < 1 momentum diffuses slower than the stratifying agent. As a result this type of
flow is governed by a entirely reversed dynamics. However, this case is beyond the scope of the
present paper.
‡ Convergence tests were performed for the case of Sc = 100 (for grids up to 512×512 gridpoints)

and no significant differences could be observed. The reason for this is that when the Schmidt
number is large, gradients of ρ̃ decrease much faster by the redistribution of ρ̃ due to the secondary
circulation pattern, than due to diffusion.
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Figure 13. Evolution of the maximum values of the density perturbation ρ̃max and of the azimuthal
vorticity ωθmax for a decaying vortex with an initial density perturbation, i.e. similar to case 3. The
results are shown for four simulations with different Schmidt numbers (with Re = 100, F = 0.3 and
Λ = 0.4).

particularly for higher Reynolds numbers. Fortunately, however, the results shown
in figure 13 indicate that this is not necessary. It is reasonable to perform numerical
simulations of axisymmetric vortices in a linearly stratified fluid with Sc = 10, without
dramatically changing the flow dynamics compared to real experimental conditions
(Sc ≈ 700).

The Froude number represents the relative strength of the inertial force and the
buoyancy force in the flow. It was shown in (4.16) that the deflection of the isopycnals
inside a vortex is directly proportional to the density perturbation, ∆z = Lρ̃, and
expression (4.13) indicates that the density perturbation is proportional to F2. In
other words, the smaller the Froude number is, the smaller is the deflection of the
isopycnals and the weaker the secondary circulation during the decay of the vortex
will be. It is therefore obvious that fluid motion inside a vortex in a linearly stratified
fluid can be better approximated by strictly two-dimensional flow when F becomes
smaller. This is illustrated in figure 14, where for three different cases (F = 1.0, F = 0.3
and F = 0.1) the maximum values of ρ̃ and ωθ are plotted as a function of time.
The comparison with the diffusion model clearly shows that for the lowest Froude
number the differences between the simulated flow and the diffusion model (ρ̃max(t))
are almost negligible and, furthermore, that the production of ωθ tends to vanish as
F decreases.

Further numerical simulations are performed to investigate the effect of the
Reynolds number. In particular the same case as that of figure 12 is simulated
for Re = 500 and Re = 1000. However, the results, except for a slower decay of ρ̃ and
ωz , do not show striking differences. Besides, when the time is scaled with the factor
4/Re the results for different Reynolds numbers all collapse onto one single curve.
This is due to the fact that the Reynolds number changes the diffusion time scale of
both the momentum and the density by the same amount. However, it is observed in
some of the experiments as well as in a few preliminary three-dimensional simulations
that the Reynolds number plays an important role in the stability of the vortex with
respect to azimuthal perturbations. This topic, however, is beyond the scope of the
present paper and will be the subject of a forthcoming study.
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Figure 14. As in figure 13, but now for three simulations for three different Froude numbers
(with Re = 100, Sc = 10 and Λ = 0.4).

5.3. Vortex stretching

We found that the secondary circulation during the decay of a vortex decreases for
smaller Froude number flows and it was concluded that the vortex agrees better with
the diffusion model. However, the influence of the secondary circulation on the vortex
itself has not yet been addressed. A possible effect of the secondary circulation is
illustrated in figure 15. During the decay of the vortex the isopycnals move back
to their undisturbed positions and a radially inward flow takes place inside the
vortex. This process is called vortex stretching, during which potential energy that is
stored in the perturbation of the isopycnals is converted into kinetic energy of the
vortex. Combined with the effects of vertical and radial diffusion of momentum the
stretching process will lead to a reduced decay rate of the vorticity at the symmetry
plane and a reduced radial growth of the vortex. Figure 16(a, b) shows the evolution
of the maximum values of ωz (i.e. in the core of the vortex at the symmetry plane
z = 0) and of the vortex radius r̂ (i.e. the radius at z = 0 where the vertical vorticity
changes sign) for three different Froude number flows, while keeping the initial vortex
thickness fixed (Λ = 0.3). The dashed lines represent results from the diffusion model
for similar initial conditions, given by (4.11) and (4.9). It is observed that for F = 0.1
both the decay of the vortex and its radial growth are described well by the diffusion
model. However, for larger values of F , especially F = 1.0, the vortex decays at a
much slower rate than according to the diffusion model. At the same time the vortex
temporarily ceases to grow in the radial direction. A similar behaviour is observed in
figure 16(c, d) where the results are compared between simulations for two vortices
with different initial thicknesses (Λ = 0.2 and 0.4), while keeping the Froude number
fixed (F = 0.3). For Λ = 0.4 the decay and growth of the vortex are both characterized
well by the diffusion model, whereas for the thinner vortex the decay rate becomes
smaller and the radial growth holds for a moment.

The results in figure 16 illustrate that for small Froude number flows the diffusion
model gives a good representation of the decay of the vortex. It is not our objective
here to include the stretching effects in a more elaborate model, because it will
be shown later that for the present laboratory experiments the stretching effects
are of limited importance. Besides, the deviations from the model for a large Froude
number and a small initial vortex thickness can be explained by the following example.
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Figure 15. Illustration of the deformation of two isopycnals in a vortex. During the decay of the
vortex the isopycnals relax to their undisturbed positions and the vortex is stretched.
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Figure 16. (a) Evolution of the maximum values of ωz (normalized by their initial values) for
three cases with different values of F (with Re = 100, Λ = 0.3 and Sc = 10. (b) The corresponding
evolution of the radius of the vortex cores, r̂. (c) Similar to (a), but now for two vortices with
different initial thickness Λ (with Re = 100, F = 0.3 and Sc = 10). (d) Similar to (b). The dashed
lines represent the decay and growth of the vortices according to the diffusion model, (4.11) and
(4.9) respectively.

Suppose that the vortex is represented by a cylinder of fluid with thickness H0, which
is in solid body rotation with angular velocity Ω0, between two isopycnals. During the
decay of the vortex the thickness of the vortex will increase by an amount ∆H , due to
the relaxation of the isopycnals. Simultaneous conservation of mass and conservation
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of angular momentum then yields an expression for the relative change in Ω for a
given relative change in H:

∆Ω

Ω0

=
∆H

H0

. (5.4)

Equations (4.14) and (4.16) show that ∆H ∼ ρ̃ and ρ̃max ∼ F2/Λ3, so that ∆Ω/Ω0 ∼
F2/Λ4. In other words, the stretching process in a vortex with a small value of Λ or
for a large Froude number leads to a much more profound change in the vorticity
than for a vortex with a larger value for Λ or a smaller Froude number. For example,
this implies that the effect of the vortex stretching is approximately 16 times stronger
for the vortex with Λ = 0.2 compared with Λ = 0.4. Similarly the stretching effect
becomes approximately 10 times stronger for the case with F = 1.0, compared to
F = 0.3. These estimates appear to correspond quite well to the results in figures
16(a) and 16(c).

5.4. Comparisons between experiments, model and simulations

In order to make a comparison of the experimental results with the diffusion model
and with numerical simulations, it is necessary to calculate values for Re = VL/ν and
F = V/(LN). These numbers include the length scale L, the velocity scale V and the
buoyancy frequency N. The last is obtained by measurement of the density profile, as
described in § 2.1, yielding N = 1.9 rad s−1. The length scale L was found to be defined
by the initial radial position in the vortex, where the vorticity changes sign and it
can be estimated from the cross-section as in figure 3. This yields L ≈ 3 cm, although
this value is only an estimate because the vortex is not always entirely axisymmetric.
Furthermore, information about the vertical extent of the vortex is obtained by
estimating Λ = λ/L. From the experimental results it appears that Λ ≈ 0.3. As
illustrated before, the velocity scale V can be estimated by V = (2π)1/2λωM , with ωM
the experimentally observed initial maximum value of the vorticity.

The choice of the time at which the above parameters are evaluated is an important
issue. In § 2.1 we have mentioned that the time origin (t = 0) was defined as the
moment the injection of fluid was stopped. At that moment, however, the vortex
is not well-defined, because the injection cylinder is still present in the fluid. It is
therefore more reliable to choose a later time to define parameters for the initial
vortex, and in the present experiment we use t0 = 40 s, yielding V = 1.7 cm s−1.
Another choice of t0 will in general lead to other values for Re and F , because
these numbers define the ‘initial condition’ of the vortex at another moment. The
present parameters are Re = 500, F = 0.3 and Λ = 0.3. To compare the experimental
results with the diffusion model, time and vorticity are non-dimensionalized by the
transformations t′ = (t− t0)V/L and ω′zmax = ωzmaxL/V and the primes are omitted.
The evolution of the maximum vorticity in the vortex at z = 0 and z = 2 cm are
compared with the model, given by (4.11), and with a numerical simulation, initialized
by the same parameters, in figure 17(a). Especially for z = 0 there appears to be a
good correspondence between the experimentally observed decay and the diffusion
model. The deviation of the results with the diffusion model for z = 2 cm is most likely
caused by the inaccuracies in z and Λ. The lightsheet has a thickness of approximately
0.5 cm and the tracer particles have a natural spreading in their vertical distribution.
Another deviation of the measurements from the model is the slightly higher vorticity
at late times in the experiments. This is likely to be caused by a weak (solid body)
background rotation in the tank, which only becomes noticeable when the vortex
rotates very slowly. The very close agreement between the results of the numerical
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Figure 17. (a) Comparison between the experimentally obtained vorticity decay shown in figure
4 (symbols), the diffusion model (4.11), represented by the dashed lines and numerical simulations
(thick continuous lines) showing decay of a vortex under experiment conditions: Re = 500, Λ = 0.3,
F = 0.3 and Sc = 10. (b) Comparison between the measured density profile shown in figure 6 (c)
(represented in a non-dimensional form (ρ̃− z) as a function of the non-dimensional height z) and
the density distribution according to the model, given by expression (4.13) for r = 0 and calculated
for the case of F = 0.7 and Λ = 0.3.

simulation and the diffusion model shows that for the present flow conditions, the
effects of stretching during the decay of the vortex are almost negligible.

We can also make an estimate of the perturbation of the density profile for a
vortex under laboratory conditions, which can be compared to the experiment shown
in figure 6(c). For t = 22 s the value for V is estimated by using the value for the
maximum vorticity at t = 20 s in figure 5(a), which yields V = 2.3 cm s−1. With
L = 3 cm and N = 1.0 rad s−1 we find that F = 0.7 and furthermore we assume that
Λ = 0.3. Using these values the density profile is computed from (4.13) for r = 0,
and the results are presented in figure 17(b). Considering the fact that the calculated
density distribution represents only an estimate, it should be considered as an order
of magnitude approximation, which still agrees quite well with the experimentally
measured density perturbation. The maximum density perturbation is ρ̃max ≈ 0.2,
and we can estimate the maximum deflection of the isopycnals in this experiment:
∆zmax = Lρ̃max ≈ 0.6 cm.

6. Conclusions
The comparison of the results of laboratory experiments with an analytical model

and with numerical simulations has led to a better insight into the dynamics of
an axisymmetric vortex in a linearly stratified fluid. The distribution of the vertical
component of the vorticity in different horizontal planes inside the vortex has been
measured, as well as the vertical density profile through the centre of the vortex. The
diffusion model, which has been derived from the Boussinesq equations under the
assumption of a purely axisymmetric swirling flow, has provided analytical expressions
for the three-dimensional time-dependent distributions of velocity and density inside
the vortex.

The laboratory experiments confirmed that inside the vortex the density profile is
deformed: above and below the vortex isopycnals are deflected towards the symmetry
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plane. The numerical simulations performed for a vortex in a linearly stratified fluid
under various initial conditions revealed that in the absence of an initial density
perturbation the centrifugal force inside the vortex induces a circulation that results
in the deformation of the isopycnals. The vortex is then in cyclostrophic balance.

Furthermore, numerical simulations have shown that when the time scales of
diffusion of momentum (vorticity) and of the stratifying agent (salt) are disparate,
i.e. when Sc� 1, the decay of the vortex is accompanied by a buoyancy-induced
secondary circulation. This circulation results from the fact that the cyclostrophic
balance in the vortex is disturbed during the decay and it causes a redistribution of
the density inside the vortex. The vortex therefore becomes stretched during its decay.
In other words, potential energy stored in the density perturbation is converted into
kinetic energy of the vortex, so that the decay of the vortex starts to deviate from
the decay described by the diffusion model. However, it has been shown that for flow
conditions that apply to the laboratory experiments the stretching effect is almost
negligible and the decay of the vortex is described well by the diffusion model.
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Appendix. The solution of the diffusion equation
The diffusion equation (4.2) is solved by the method of separation of variables.

Suppose that

v̂θ(r, z, t; k, l) = Ĝ(r; k)Ĥ(z; l)T̂ (t; k, l) (A 1)

is a solution of the diffusion equation. Substitution of this expression in (4.2) and
dividing by Ĝ(r)Ĥ(z)T̂ (t) results in

Re
1

T̂

dT̂

dt
=

1

Ĝ

d2Ĝ

dr2
+

1

rĜ

dĜ

dr
− 1

r2
+

1

Ĥ

d2Ĥ

dz2
. (A 2)

Separation of variables for this equation yields three separate differential equations
for Ĝ, Ĥ and T̂ :

d2Ĝ

dr2
+

1

r

dĜ

dr
− Ĝ

r2
= −k2Ĝ,

d2Ĥ

dz2
= −l2Ĥ and

dT̂

dt
= − (k2 + l2)

Re
T̂ . (A 3)

Solutions for these standard differential equations are

Ĝ(r; k) = A(k) J1(kr) + B(k)Y1(kr), (A 4)

Ĥ(z; l) = C(l) cos (lz) + D(l) sin (lz), (A 5)

T̂ (t; k, l) = exp

{
− 1

Re
(k2 + l2)t

}
, (A 6)

where A, B, C and D are constants (i.e. independent of r, z and t), to be determined
by boundary and initial conditions.

Boundary conditions are given by the constraint that the solutions should be finite
for r = 0 and should vanish for r → ∞. This results in B = 0. Additionally, by
supposing that the fluid motion is initially even around z = 0, one finds that D = 0.
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As there are no limitations on the domain in the r- and z-directions, k and l are
not restricted to certain values. It is therefore possible to construct a general solution
vθ(r, z, t), which is given by

vθ(r, z, t) =

∫ ∞
0

∫ ∞
0

A(k) J1(kr)C(l) cos (lz) exp

{
− 1

Re
(k2 + l2)t

}
dk dl. (A 7)

The functions A(k) and C(l) are determined by using the initial condition for vθ ,

vθ(r, z, 0) =

∫ ∞
0

A(k) J1(kr) dk

∫ ∞
0

C(l) cos (lz) dl ≡ G(r)H(z). (A 8)

To determine the function A(k) from the initial condition G(r), the Hankel integral
formula (see, e.g. Oberhettinger 1972) can be used. The radial part of the initial
velocity distribution vθ(r, z, 0) can thus be written as

G(r) =

∫ ∞
0

A(k) J1(kr) dk =

∫ ∞
0

[
k

∫ ∞
0

G(u) J1(ku)u du

]
J1(kr) dk. (A 9)

Hankel integrals are tabulated for various functions in Oberhettinger (1972). The
function C(l) can be computed by applying cosine transform techniques. Using the
expressions (4.6) and (4.7) for G(r) and H(z) then yields

vθ(r, z, t) =

∫ ∞
0

[∫ ∞
0

1

8
k2 exp

{
−1

4

(
4t

Re
+ 1

)
k2

}
J1(kr) dk

]

×1

π
exp

{
−
(
t

Re
+

1

2
Λ2

)
l2
}

cos (lz) dl, (A 10)

which can be written in an analytical form given by (4.8). The corresponding radial
and vertical vorticity components are now given by

ωr = −∂vθ
∂z

=
rz

π1/2(2Λ2 + (4/Re)t)3/2(1 + (4/Re)t)2

× exp

(
− z2

2Λ2 + (4/Re)t

)
exp

(
− r2

1 + (4/Re)t

)
(A 11)

and

ωz =
1

r

∂(rvθ)

∂r
=

1

π1/2(2Λ2 + (4/Re)t)1/2(1 + (4/Re)t)2

(
1− r2

1 + (4/Re)t

)

× exp

(
− z2

2Λ2 + (4/Re)t

)
exp

(
− r2

1 + (4/Re)t

)
. (A 12)
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